Референтные (референсные) значения / Нормы анализов

Сдавая анализ в лаборатории, мы получаем в руки бланк с результатами. Результаты могут зависеть от множества факторов: в какой именно лаборатории был сдан анализ, от оборудования в лаборатории, методов проведения анализа, учитываются возраст и пол, а также другие факторы.

Некоторые результаты анализов дают простой ответ «да» или «нет» (положительный или отрицательный). Например, тест на беременность определяет наличие или отсутствие гормона ХГЧ в моче, а анализ на антитела к какой-либо инфекции определяет их отсутствие или присутствие в организме. Такой вид исследования называется качественным.

Более часто используются количественные анализы, результаты которых выдаются в виде цифровых значений с указанием референтного интервала. Например, результат анализа на уровень билирубина в крови может выглядеть примерно так: 0.9 мг/дл (референтные значения: 0.2 – 1.2 мг/дл). В данном примере результат анализа попадает в пределы референтных значений, то есть, находится в пределах нормы.

Что такое референтный диапазон?

Референтный диапазон или референтные значения (от англ. reference range, reference interval; или референсные значения) устанавливаются в ходе клинических исследований, во время которых тестируется большое количество здоровых людей, сгруппированных по полу, возрасту, этнической принадлежности и другим факторам. Полученные данные анализируются, приводятся к среднему значению и, путем математических и статистических подходов, устанавливается референтный интервал, в который попадают данные 95% здоровых людей. То есть, в 5% случаев у здоровых людей результаты анализа выходят за пределы референтного диапазона.

Предпочтительнее использовать термин «референтный диапазон (интервал)», чем «нормальный диапазон», потому что «референтный» (референсный) подразумевает, что эти данные можно применить к определенной группе людей. При рассмотрении результатов анализа разных групп людей, становится понятно, что, то, что является «нормальным» для одной группы, не обязательно будет нормальным для другой. Например, при беременности происходят изменения в организме, в следствие чего, у беременных женщин есть свои собственные «нормальные значения» для многих анализов, которые сильно отличаются от значений небеременных женщин того же возраста.

Референтные значения могут отличаться в разных лабораториях, так как лаборатории используют разные виды оборудования и разные методы исследования. Поэтому каждая лаборатория устанавливает свои собственные референтные значения.

Референсные значения в анализах крови

Анализ крови — это не только биохимические показатели. Нередко он назначается для определения других данных о наличии или отсутствии определенных компонентов. Для каждого вида анализа крови есть свои установленные данные, объединенные в специальные таблицы. Не стоит забывать и о различии по искажениям из-за объективных причин, разнице, определяемой возрастом и полом.

Онкомаркеры: референсные значения

Расшифровка анализа на онкомаркеры – прерогатива исключительно онколога. От каждого конкретного вида, его количества и факта присутствия может зависеть окончательный диагноз. Но только факт наличия таковых. если они находятся в меньшем количестве, чем диктует референсное значение – ничего не значит. Онкомаркеры в норме могут быть и у здорового человека. Дело не в факте присутствия, а в его совокупности с другими показателями.

Референсные значения глюкозы при сахарном диабете

При соблюдении всех необходимых условий сдачи анализа, (кровь из вены и строго натощак) есть определенные нормы, которые должны отразиться в анализе:

  • у взрослых — 4,1–5,9 ммоль/л;
  • у младенцев до 1 мес. — 2,8–4,4 ммоль/л.
  • у детей с месяца до 14 лет — 3,3–5,6 ммоль/л;
  • у пожилых людей (с 60 лет) и беременных показатели могут достигать 4,6–6,7 ммоль/л.

Расхождения на незначительные цифры еще не означают присутствия сахарного диабета. Его наличие устанавливается после нескольких лабораторных анализов, проведенных неоднократно. Немаловажную роль в этом процессе играет и инсулин, референсные значения которого тоже важны при установлении диагноза.

Референсные значения гормонов

В организме человека вырабатывается значительное количество гормонов, продуцируемых органами эндокринной системы. У каждого из них есть свои приблизительные референсные значения, определяемые соответствующими анализами на гормоны. Понятие относительной нормы может различаться в зависимости от пола, возраста и физиологического состояния, исследуемого.

Референсные значения ТТГ

Анализ на тиреотропный гормон занимает важное место в диагностике негативных состояний, вызванных дефицитом ТТГ в организме. Особенность определения референсных значений тиреотропина состоит в возрасте, поле и наличествующих показаний для его измерения (внешних и внутренних признаков, свидетельствующих о его недостатке или избытке). Решать вопрос о необходимости терапии и установлении определенного диагноза должен только эндокринолог, на основании всех необходимых диагностических показателей.

Что, если результат анализа выходит за пределы референтных значений?

Так как референтные значения основаны на результатах анализов 95% здоровых людей, то остаются 5% также здоровых людей, результаты которых не попадают в референтный диапазон. Это говорит о том, что если результат анализа немного выше или ниже референтных значений, то это не обязательно указывает на наличие проблемы, но и наоборот, результат, входящий в референтный диапазон, не всегда гарантирует отсутствие проблем со здоровьем. Если врач подозревает проблему, то может быть назначен повторный тест или дополнительные анализы.

МИС и референтные интервалы

Многовековое использование в медицинской практике результатов лабораторных исследований сформировало подход к их обобщению и анализу, в основе которого лежит термин «референтный интервал».

Суть последнего базируется на четырех постулатах:

  1. Разброс данных анализов при их многократном повторении с достаточной степенью точности описывается функцией Гаусса (нормальное распределение).
  2. Интерес для диагностики представляют результаты только тех лабораторных образцов, значения которых выходят за рамки референтных интервалов, определяемых по кривой плотности распределения данных. Из теории ошибок следует, что если получено среднее значение (математическое ожидание «М») серии одинаковых испытаний, то 95% результатов попадают в интервал, равный (М ± 2Ϭ), где Ϭ – стандартное отклонение. Принципиально, что это условие выполняется при разбросе данных, подчиняющихся нормальному закону распределения.
  3. Обычно среднее значение лабораторных анализов и величина стандартного отклонения определяется путем проведения исследований в выбранной целевой группе пациентов, определяемых как здоровые (практически здоровые). В такую группу могут, например, входить мужчины в возрасте от 18 до 45 лет. При этом математическое ожидание полученных данных фиксируется в качестве «нормы», а допустимое значение должно попадать в референтный интервал.
  4. Логично предположить, что «заболевание» должно, видимо, смещать позицию наиболее вероятного значения анализа при сохранении общего вида кривой плотности распределения данных.

С точки зрения статистики, основанной на технологиях бумажного документооборота, подход является корректным и, видимо, оптимальным. Сложно представить, что для получения значения «нормы» единовременно проводилось обследование нескольких тысяч пациентов с последующим сведением результатов в столбики бумажных бланков.

Вместе с тем, после начала активного использования в лечебных процессах медицинских информационных систем и методов компьютерной обработки данных ситуация коренным образом изменилась. Мы получили возможность не только анализировать значительно большие объемы данных, но и «натыкаться» на факторы, влияние которых на результаты проявляется только статистически.

В процессе сопоставления лабораторных исследований, годами накапливающихся в хранилищах данных МИС, мы натолкнулись на эффект, позволяющий выдвинуть гипотезу, способную несколько трансформировать современное понимание сути референтных интервалов. Ее можно сформулировать следующим образом: «Условию нормального распределения в целевых группах здоровых пациентов подчиняются не значения анализов, а количественные соотношения кластеров, объединяющих в себе близкие по характеристикам биологических образцов группы пациентов». При этом с высокой степенью вероятности можно предположить, что в таких группах (кластерах) разброс значения анализов должен подчиняться нормальному закону.

К каким изменениям в наших представлениях это может привести? Если рассматривать локальные «нормы» для каждой из групп, общая картина ничем не отличается от привычного подхода. Разве что изменится выражение, описывающее распределение плотности и значение стандартного отклонения. Вместо классической «Гауссианы» оно будет определяться, как обобщение нескольких самостоятельных нормальных распределений. Но так как вид исходного распределения данных анализа мы определяем сугубо экспериментально, сравнить его с «отсутствующим пока теоретическим» невозможно.

Схематически случаи переходов от «здорового» состояния к «заболеванию» для двух подходов могут быть представлены рисунками 1 – 2 и 3 – 4. На рисунках 1 и 2 («классическое» представление) изменение вида огибающей для плотности значений анализов определяется «смещением» значения анализа для каждого из пациентов. Отличие между кривыми связано, таким образом, с индивидуальной реакцией организма каждого пациента на заболевание.

Рисунок 1

На рисунках 3 и 4 штрихами представлена линия, определяемая совокупностью нормальных распределений данных (вероятностями значений анализов) в «кластерах№. При заболевании в разных группах (кластерах) от диагноза к диагнозу можно, конечно, ожидать изменения значений анализа (изменение наиболее вероятного значения, или стандартной ошибки). Но отлична от нуля и вероятность того, что представители разных кластеров реагируют на болезнь по-​разному. То есть можно ожидать изменения количественных соотношений в группах при сохранении (малом изменении) результатов исследований биологического материала. Проводя аналогию с геномом человека, почему бы не предположить, что совокупность анализов здорового пациента в определенных рамках погрешностей столь же индивидуальна, как отпечаток пальца.

Что произойдет, если на различные возбудители заболеваний организмы пациентов из разных групп будут реагировать не совсем одинаково? Иммунитет одних может полностью блокировать внешнее негативное воздействие. Другим внутренних ресурсов может не хватить, даже для частичной компенсации. При этом нарушение в работе одного из органов длительное время может не отражаться на работе остальных.

Рисунок 3

Рисунок 4

Вполне возможно, что соотношения наполнений кластеров, зафиксированных для здоровых пациентов, при заболевании могут существенно измениться. Условный вид трансформации «суммарной огибающей» нормальных распределений при таком варианте приведен на рисунке 4. Здесь реализовано предположение, что значения анализов, характерных для кластеров, при заболевании изменяются мало. При этом итоговая вероятностная кривая трансформируется, в основном, за счёт изменения наполнений кластеров. Локальные распределения данных в группах обозначены символами («А», «Б», «В»…), такими же, как на рисунке 3.

Исходя из этого можно сделать логичное предположение: если выдвигаемая гипотеза ложна, то при заболеваниях наиболее вероятное значение соответствующего анализа должно смещаться в ту, или иную сторону при сохранении общего вида распределения (рисунок 2). Если же гипотеза «кластеризации пациентов» состоятельна, вид распределения должен трансформироваться от вида кривой Гаусса к варианту огибающей для некоторой совокупности нормальных распределений, разнесенных по шкале значений. То есть должны обнаруживаться локальные экстремумы и «перегибы» на вероятностных кривых. Принимая во внимание сказанное выше, рассмотрим результаты реальных исследований.

В качестве примера выбираем три диагноза из одной группы заболеваний («I11.9», «I 20.0» и «I48») и три анализа, активно используемые в этих случаях (Г0002, Г0018 и Г0020). Так как нас интересуют не конкретные анализы, а изменения вероятностных распределений их значений, приведенные кодировки будут применяться и в дальнейшем. Пользователи же МИС qMS могут при желании выяснить их реальное наименование и используемые размерности, просто заглянув в соответствующий справочник услуг.

Примененная нами методика базируется на построении гистограмм по значениям анализов, проведенных в первые два дня после госпитализации пациента. В качестве диагноза, к которому привязываются анализ, рассматривается основной диагноз выписки. Определенную сложность при обработке данных представлял выбор величины бина гистограммы. Оптимальный и всеми признанный подход решения этой задачи нам, к сожалению, не известен. Поэтому мы остановились на часто используемом варианте, предложенном Стерджессом. В его основе лежит уравнение, связывающее число бинов гистограммы (Nб) с общим числом проведенных наблюдений (n): Nб=1+log2(n).

Для обеспечения корректности подхода мы выбрали анализы, количество которых превышает 2000, что соответствует значению Nб≈12. Кривые плотности результатов мы строили с помощью сплайнов, привязывая их начальные и конечные точки к средним значениям соответствующих бинов. Ширина бина гистограммы конкретного анализа определялась по разнице между минимальным и максимальным значениями выборки, путем деления полученного интервала на Nб. При этом мы отбрасывали результаты измерений, встречающиеся в общей массе данных менее 2‑х раз. Для возможности сопоставления распределений по различным диагнозам площади под огибающими мы нормировали к 100 единицам.

На каждом из приведенных ниже рисунков (рисунки 5, 6 и 7) кроме соответствующих «кривых распределения» приведены данные по «норме» показателя (справочные материалы) и его референтному интервалу.

Начнем с анализа Г0002. В первом случае («I48») кривая вполне соответствует «классическому» представлению. Даже наиболее вероятное значение несмотря на заболевание вполне соответствует «норме». При «классическом» подходе вывод об отклонениях состояния пациента от нормы можно, видимо, делать, ориентируясь на «крылья» огибающих. К этому диапазону относится, в частности, и незначительный локальный максимум в районе значения «15». Его, конечно, можно отнести к погрешности наблюдений, но мы пока торопиться не будем. Сомнение в целесообразности его игнорирования связаны с тем, что аналогичный «всплеск» еще более выраженно присутствует и на огибающей для диагноза «I20.0».

Второй график, кроме дополнительного «перегиба» в районе значения «12», отличается от первого и смещением наиболее вероятного значения в большую сторону. Еще более любопытным оказывается график для диагноза «I11.9». Интерес вызывает не столько то, что «пик» вероятности приходится на значение «6» (вместо «6.5» по норме), сколько возможное существование дополнительного максимума, весьма близкого к случаю «I20.0». Было бы логичным предположить, что «огибающая» формируется, как минимум, двумя вероятностными кривыми. Несмотря на то, что «завышенных» значений анализа в рассматриваемом случае встречается существенно меньше, локальный максимум в точке «12.5» встречается и здесь.

С точки зрения классического подхода эти «незначительные отклонения» можно объяснить неаккуратностью измерений, или использование «просроченных» маркеров для анализаторов, или… Все это так, но наблюдаемые отличия могут быть объяснены и различием в поведении представителей разных «кластеров» при этих заболеваниях. Так, например, «Гипертонии» в большей степени могут быть подвержены представители кластера, который условно можно обозначить как «6», а кластер «15» от этого недуга практически избавлен.

Сделаем следующий шаг и рассмотрим кривые плотностей вероятности для анализа «Г0020». Предположим, что выдвинутая гипотеза имеет право на существование. Попробуем представить полученные в эксперименте (на самом деле в реальных лечебных процессах) кривые в виде огибающей «спектра нормальных распределений». Каждая «линия» такого спектра описывается формулой Гаусса:

Применительно к нашему рассмотрению «X» – математическое ожидание для значений анализа, характерного для выбранного «кластера» пациентов. «А» – параметр, определяющий количественную долю представителей кластера «X» в генеральной выборке пациентов. P(X) – число представителей кластера в бине, заключенном между значениями «хi» и «хi+1». Наконец «?» – значение стандартного отклонения значений анализа, применительно к кластеру «X». Существенным явилось бы выяснение правомерности утверждения о единственности представления кривой распределения плотности вероятности в виде «спектра гауссиан». Но пока ограничимся тем, что такое разложение принципиально возможно.

Рассмотрим варианты «нормальных» спектров применительно к сплайнам огибающих для вероятных значений анализа «Г0020». Они представлены на рисунках 8, 9 и 10. В данном случае сплошная «жирная» линия соответствует реальным данным, а пунктирная – определяет огибающую для совокупности «спектральных линий», обозначенных тонкими контурами. Видно, что реальный эксперимент и полученная огибающая спектра практически совпадают.

Рисунок 8 Рисунок 9 Рисунок 10

Характерно, что референтный интервал в данном случае перекрывает практически весь диапазон изменения показателя (от 5 до 13!). То есть с учетом «классического» подхода для указанных диагнозов проведение анализа «Г0020» смысла не имеет.

В то же время картина меняется, если рассматривать пациента, как устойчивую и сбалансированную химико-​биологическую систему, в здоровом состоянии адекватно реагирующую на внешние раздражители: нагрузки, лекарственные препараты, пищу и т.д. Очевидно, что задача любой устойчивой замкнутой системы, к числу которых несомненно относится и человек, связана с максимальным снижением негативных последствий внешних воздействий, или нарушений в работе одного из своих элементов (внутренних органов).

В последнем случае, например, при заболевании поджелудочной железы, на начальном этапе радикально может меняться значение прямого индикатора (содержание инсулина), или опосредованного (количество глюкозы в крови), при сохранении значений всех остальных анализов. Предположим, что в нашем распоряжении имеются описания «кластеров», значения «Х» которых не связанны с нарушением работы рассматриваемого органа. В этом случае интересно было бы сравнить между собой их количественные характеристики («А», «Х» и «?») для случаев «здоровые пациенты» и «заболевание с диагнозом Y».

Допустим, что кластеры, определяемые близостью значений устойчивых анализов, действительно существуют (своеобразный аналог теории «квантования»). Тогда, отталкиваясь от сопоставления вида вероятностных распределений данных для различных групп, можно было бы делать обоснованные предположения о склонности их представителей к тем, или иным заболеваниям. В определенном смысле это могло бы стать более доступной альтернативой расшифровке генетического кода. То есть, при состоятельности выдвигаемой гипотезы мы могли бы разработать дополнительные инструменты ранней диагностики и профилактики. Наконец, проводя параллель с геномом, можно предположить, что совокупность значений анализов, характерных для каждого конкретного человека, может быть достаточно устойчива.

Вернемся, однако, к рисункам. Нетрудно заметить, что все три «экспериментальные кривые», смоделированы практически одним и тем же набором функций Гаусса, немного отличающихся положением мод3 и значениями стандартных ошибок (?) для разных диагнозов. Основное же отличие заключается в параметрах «А», оказывающих определяющее влияние, как на положение «наиболее вероятного» значения огибающей, так и на ее общий.

Отталкиваясь от реального вида кривой плотности значений можно сделать предположение, что основную «группу риска» для диагнозов «I48» и «I11.9» составляют пациенты, относящиеся к кластеру «10.5», в то время как представители кластер «8» должны более пристальное внимание обращать на признаки проявления стенокардии. Представители же кластера «6.5» могут практически ничего из этого набора заболеваний не опасаться.

В завершение рассмотрим вид распределения плотности значений для анализа «Г0018» (рисунки 11, 12 и 13). При определении «нормы» и референтных интервалов (14 и 10÷18 соответственно) исследователи, вполне возможно, и пользовались результатами, соответствующими некоему «нормальному распределению», но распределения в рамках рассматриваемых диагнозов этому условию заведомо не соответствуют. Прежде всего, имеются четыре характерных экстремума (на рисунке 11 это значения: «11.6», «14.4», «16.4» и «20»). При более аккуратном разложении огибающих в «спектр», таких экстремумов окажется наверняка больше, но мы ограничимся указанными.

Рассматривая полученный результат с точки зрения «классических представлений», мы вынуждены будем констатировать, что анализ «Г0018» является маркером для приведенных диагнозов. И действительно, значительная часть данных обследованных пациентов существенно выходит за рамки референтного интервала. Возникает, правда, вопрос: «почему при таком значительном изменении количественного соотношения групп «здоровых» (анализы в рамках референтного интервала) и «заболевших» пациентов положение моды (наиболее вероятного значения анализа) остается неизменным?».

Если же принять теорию «кластеров», все становится на свои места. Вполне можно себе представить, что группа пациентов, анализы которой тяготеют к значению «20», в рассматриваемых диагнозах представлена гораздо шире и при этом вполне укладывается в свой локальный (относящийся к «кластеру») референтный интервал. Дополнительным аргументом в пользу теории является и факт наличия указанного «кластера» и в анализах диагноза «I11.9». Там он, правда, выражен менее ярко и, при желании, может быть интерпретирован, как «погрешность».

Следует отметить, что выводы из рассмотрения значения анализа «Г0018» для диагнозов «I48» и «I20.0», сделанные на основе альтернативных логик, во многом совпадают, если речь идет о диапазоне «20». Но обоснования результата заметно отличаются. Если в первом случае речь идет о выходе за референтный интервал, то во втором, об отношении пациента к «группе риска». В то же время, при «классическом» подходе значение анализа, равное 16-​ти, настороженности у специалиста вызывать не должно, в то время как при втором, подозрение на «I20.0» должно просто «бить в набат».

Аналогичное высказывание справедливо и для значений анализа в диапазоне «12». Врачу в этом случае имеет прямой смысл провести дополнительные исследования, связанные с уточнением признаков таких заболеваний, как «I48» и «I11.9» (Рисунки 11 и 13).

Вместо заключения

С исторической точки зрения только «вчера» началось активное внедрение информационных систем в работу медицинских организаций. Но уже сегодня мы оказались погружены в принципиально новую информационную реальность. И дело здесь не только в доступности сотен терабайт данных и наличии инструментов и методов их обработки. Появилась основа для проверки корректности существующих представлений об интересующих нас объектах и связанных с ними процессах. Остановка за оптимальными подходами к выбору наиболее перспективных направлений исследований.

Если позиции «искусственного интеллекта», благодаря кинематографу, фантастической литературе и политике Государства уже закрепились под бюджетным солнцем, то вопросы поиска новых зависимостей, закономерностей и представлений пока еще ожидают своей востребованности.

Озвученная выше идея кластеризации представляет из себя не более чем гипотезу, требующую подтверждения, или опровержения. Но подобных задач, отталкивающихся от недоступных ранее наблюдений, множество. И их количество будет, как нам кажется, стремительно нарастать. Необходимо научиться выбирать из них те, которые в обозримой перспективе способны реально повлиять на повышение эффективности и качества лечебных процессов.

Так, в частности, если рассматриваемая гипотеза окажется состоятельной, основанные на ней выводы могут привести к существенному пересмотру представлений о сути как референтных интервалов, так и «нормы». Пока в этом направлении сделан только первый шаг. Очень не хватает данных по анализам, связанным с состоянием «здоров». То есть, как и во многих подобных случаях, требуют подготовки и согласования программы действий, в последние годы все чаще обозначаемые словосочетанием «дорожная карта». В контексте изложенного выше необходимо предусмотреть, как минимум, следующие шаги:

  • Формирование «Паспортов обследований» населения в рамках диспансеризации с включением в нее существенно более широкого набора лабораторных исследований.
  • Целенаправленное рассмотрение (изучение) плотностей распределения результатов анализов для различных заболеваний с целью определения наличия на них характерных локальных экстремумов и «перегибов».
  • Анализ пригодности (возможности использования) существующих методов и алгоритмов математического моделирования с целью представления вероятностных кривых в виде «спектра» нормальных распределений с проверкой их стабильности и воспроизводимости.
  • Продумывание методики диагностирования с учетом возможной состоятельности гипотезы кластеризации.
  • На основе проводимых обследований проведение сопоставления выводов, опирающихся на «классические» и «альтернативные» представления.

Понятно, что для реализации подобных программ необходима, как минимум, законодательная основа доступа к деперсонифицированной информации, накапливаемой в МИС, и согласованные (скоординированные) действия владельцев первичных данных, разработчиков программного обеспечения и профессиональных аналитиков. Ну и, конечно, желание что-​то в этой жизни поменять к лучшему.

Почему на сайте не указаны референтные значения показателей?

В большинстве анализов референтные диапазоны не указаны, потому что не существует универсальных референтных значений. Каждая лаборатория, учитывая индивидуальные особенности своей работы, указывает на бланках анализов свой собственный диапазон референтных значений. Оценивая результаты анализов врач должен руководствоваться «нормами», указанными на бланке лаборатории, где был сдан анализ. Если исследование необходимо проводить несколько раз, это желательно делать в одной и той же лаборатории, чтоб легче было сравнивать результаты.

Синонимы: референсные значения, референсный диапазон, референтный интервал, reference interval, reference range, reference values, normal range.

Другие факторы, влияющие на результаты исследований

Лаборатории обычно сообщают ваши результаты анализов, указывая референсные значения для вашего возраста и пола.Затем ваш врач интерпретирует для Вас результаты, основываясь на личных знаниях о состоянии вашего здоровья и применяемой лекарственной терапии. Необходимо учитывать, что на результаты исследования может повлиять множество дополнительных факторов: употребление кофе, табака, алкоголя, витаминов, натуральных и искусственных красителей и др.; особенности вашей диеты(например, вегетарианская или мясная), стресс или беременность. Даже ваши позы, когда у Вас берут биоматериал, могут повлиять на некоторые результаты, равно как и физические нагрузки, предшествовавшие сдаче анализов.

Например, уровень альбумина и кальция может увеличиваться при смене положения лежа в вертикальное положение.

Интенсивные физические упражнения могут повлиять на активность ферментовкреатинфосфокиназы (КФК), аспартатаминотрансферазы (АСТ) и лактатдегидрогеназы (ЛДГ). Поэтому, посещение тренажерного зала накануне сдачи анализа может привести к повышению КФК.Кроме того, уровень тестостерона, лютеинизирующего гормона (ЛГ) и тромбоцитов может быть увеличенным у людей, которые в течение нескольких месяцев или лет активно занимаются спортом, например, бегом на длинные дистанции или тяжелой атлетикой.

Все эти факторы подчеркивают важность соблюдения правил подготовки к анализам. Важно также соблюдать указания врача при подготовке к исследованиям. Соблюдение этих простых правила даст Вам еще большую уверенность в правильности и точности полученных результатов.

Какие факторы влияют на референтное значение

Для получения точных результатов перед сдачей биохимического анализа крови нужно соблюдать все указания врача. Кроме принятых показателей по типу возраста и пола исследуемого, на изменения референсного интервала может влиять ряд других причин:

  • беременность;
  • менструальный цикл;
  • употребление алкоголя;
  • стрессы;
  • неправильный режим питания;
  • индивидуальные особенности человека;
  • прием некоторых лекарств;
  • время суток;
  • физические нагрузки;
  • физиотерапевтические процедуры.

Нормальные показатели у детей

Клинические анализы крови у детей берутся с первого дня жизни. Они помогают неонатологам и акушерам установить наличие проблем, если таковы имеются, и начать грамотное лечение. В первые дни жизни нормы эритроцитов, уровня гемоглобина и другие характеристики крови высоки, но с годами постепенно снижаются. Нормы референсного диапазона для разных возрастных групп указаны в таблице.

Показатели Возраст ребенка
Первые сутки жизни 1 месяц полгода 12 месяцев 1-6 лет дети до 12 лет подростки
Эритроциты 4-8 4-6 4-5 4-5 3,5-4,5 3,5-4,7 3,6-5
Гемоглобин 179-241 114-176 109-142 110-137 110-139 110-144 114-149
Тромбоциты 180-500 175-390 175-390 180-390 170-400 162-183 159-358
Лейкоциты 9-25 7-14 6-13 6-12 5-12 4,5-10 4,3-10
Ретикулоциты 30-51 3-15 3-15 3-15 3-12 3-12 3-12
Лимфоциты 13-37 41-77 43-75 39-73 27-61 25-55 21-51

Референтный интервал в анализах у взрослых

Результаты анализов, выдаваемые на руки взрослым пациентам, сопровождаются значениями, которые соответствуют полу и возрасту. В таблице ниже, приведены примерные интервалы нормы для каждого элемента крови. Следует помнить, что результаты могут отличаться в зависимости от лаборатории, в которой проводилась диагностика. Чтобы расшифровать анализы правильно, необходимо проконсультироваться с врачом.

Пороговые значения у взрослых
Показатели Женщины Мужчины
Концентрация гемоглобина, 120-144 130-163
Гематокрит 34,3-46,6 34,3-46,6
Красные кровяные тельца 3-5 4-5
Тромбоциты 180-360 180-360
СОЭ 2-15 1-10
Лейкоциты 4-9 4-9
  • Как почистить сосуды — быстро в домашних условиях. Как почистить сосуды народными средствами дома, видео
  • Ударно-волновая терапия — стоимость и отзывы. Показания для лечения ударно-волновым методом и противопоказания
  • Как сделать крем для вафельных трубочек в домашних условиях

Индивидуальная норма у беременных

Хорионический гонадотропин начинает вырабатываться в большом количестве примерно с 4-6 недели после момента зачатия и считается важным показателем для определения хромосомных дефектов плода. Максимальная концентрация ХГЧ крови наблюдается примерно на 8-9 неделе беременности, после родов же показатели идут на спад. Пробы у женщины берут по недельно и на основе полученных данных делают соответствующие выводы. Норму можно установить самостоятельно по таблице:

Референсные значения ХГЧ
Срок беременности, по неделям норма медицинских показателей, мЕд/мл
1-3 50 – 500ю
5-14 1500 – 95000
15-25 10000 – 35000
26-38 10000 – 60000
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]